Life-cycle greenhouse gas emissions of combustion engine and electric passenger cars and two-wheelers in India

September 21, 2021

Georg Bieker

Contents

- 1. Introduction
- 2. Methodology
- 3. Key results
- 4. Key messages

Introduction

Transport: 80% lower GHG emissions by 2050

- To limit global warming to 1.5 °C, GHG emissions of global transport need to be 80% lower by 2050
- Which technologies can deliver this deep reduction in the passenger car fleet despite a growing number of vehicles?

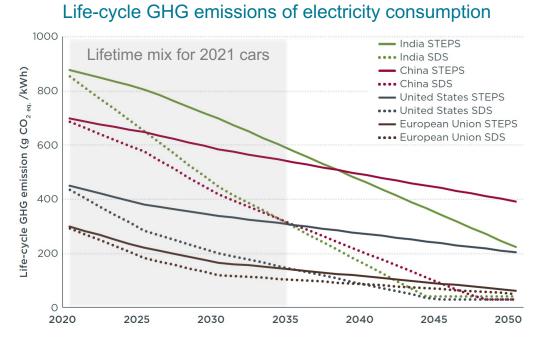
ON CLEAN TRANSPORTATION

Global transport sector GHG emissions in the 1.5°C scenario 10 9 Slobal transportation CO2-equivalent emissions (billion tons/year) D D D Q 8 - 80% 6 75th percentile Median 25th percentile 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

ICCT (2020). Vision 2050: A strategy to decarbonize the global transport sector by mid-century.

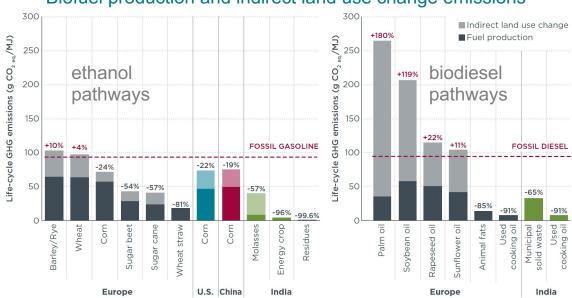
4

Methodology


Scope: Life-cycle GHG emissions

- Life-cycle GHG emissions: CO₂, methane (CH₄), nitrous oxide (N₂O)
 - Vehicle cycle:
 - Vehicle and battery production (including raw material)
 - Maintenance
 - End-of-life, recycling
 - Fuel cycle (well-to-wheel):
 - Fuel and electricity production
 - Indirect land use change (ILUC)
 - Fuel combustion in vehicle

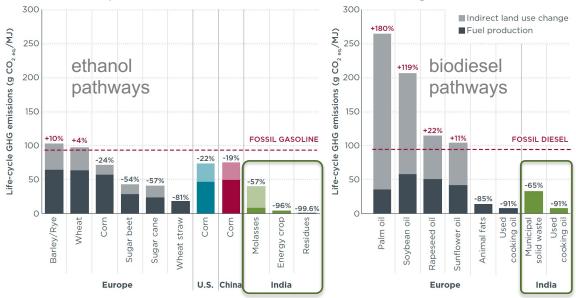
Methodology: Lifetime average electricity mix


- 1) Vehicle lifetime average carbon intensity of fuel/electricity mix:
 - India average biofuel and biogas blend
 - India average electricity mix
 - Projected future blend/mix based on current policies
 - Compared to Paris Agreementaligned development

Methodology: Indirect land use change (ILUC)

- 2) Life-cycle GHG emission of biofuels:
 - Food-based biofuels: high ILUC emissions
 - Residue- and wastebased biofuels: low ILUC emissions

Biofuel production and indirect land use change emissions


Methodology: Indirect land use change (ILUC)

- 2) Life-cycle GHG emission of biofuels:
 - Food-based biofuels: high ILUC emissions
 - **Residue- and waste-**• based biofuels: low ILUC emissions

2018 National Policy on Biofuels:

ON CLEAN TRANSPORTATION

- Only non-food-based ethanol: • Molasses, energy crop, residues
- Only non-food-based biodiesel: • Used cooking oil and waste

Biofuel production and indirect land use change emissions

Bieker (2021). A global comparison of the life-cycle GHG emissions of combustion engine and electric passenger cars.

9

Methodology: Battery production

- 3) Battery production:
 - Most recent data on
 industrial-scale
 battery production
 - Market average mix of regional battery production

Battery production GHG emissions

kg CO _{2 eq.} /kWh	Europe	United States	China	South Korea	Japan
NMC111-graphite	56	60	77	69	73
NMC622-graphite	54	57	69	64	68
NMC811-graphite	53	55	68	63	67
NCA-graphite	57	59	72	67	70
LFP-graphite	34-39	37-42	51-56	46-50	50-55

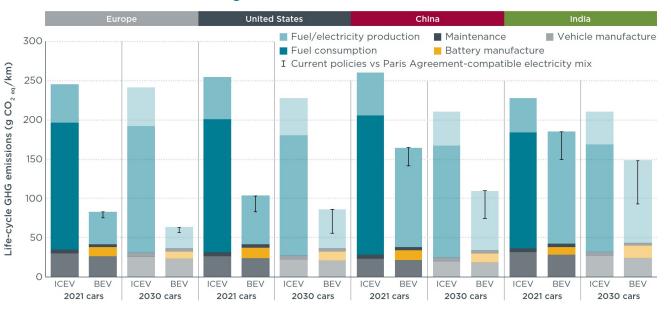
Based on Argonne National Laboratory's GREET Model (2020 version)

Methodology: 20-year GWP for methane

- 4) 20-year global warming potential (GWP) of methane leakage:
 - Methane leakage for natural gas and for grey and blue (CCS) hydrogen

- 100-year timeframe: **30 times** higher global warming potential than CO₂
- 20-year timeframe: 85 times higher global warming potential than CO₂

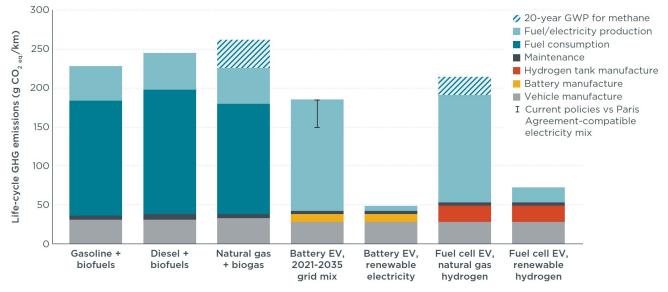
Key results



Global: Battery EVs have lowest emissions

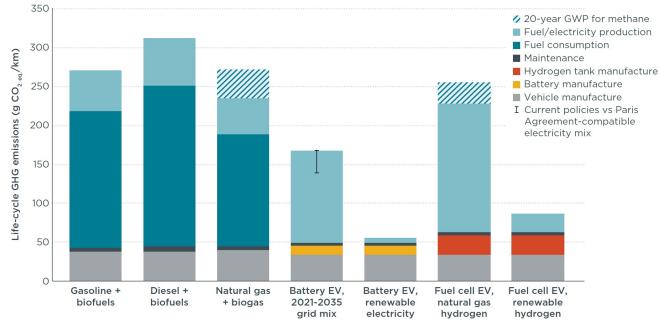
- Battery EVs have the lowest emissions for cars registered in 2021 in all four regions
- The GHG emission benefit increases for future BEVs

Life-cycle GHG emissions of medium-size cars registered in **2021** and in **2030**


India: Sedan segment

- Gasoline cars include
 hybrid electric vehicles
- Diesel and CNG cars: no GHG emissions benefit
- Battery EVs: 19%–34% lower emissions with average grid mix, 79% lower with renewables
- Fuel cell EVs:

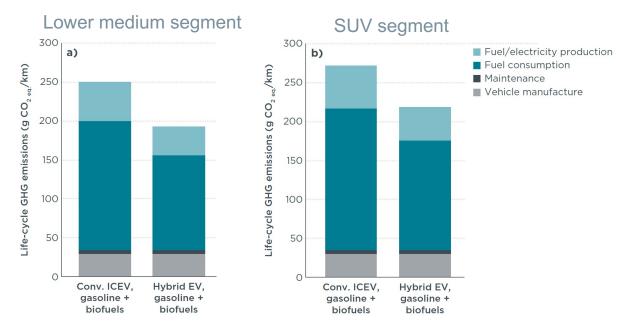
no GHG emission benefit with natural gas hydrogen, 68% lower with renewables



India: SUV segment

- Gasoline cars include
 hybrid electric vehicles
- Diesel and CNG cars: no GHG emissions benefit
- Battery EVs: 38%–49% lower emissions with average grid mix, 79% lower with renewables
- Fuel cell EVs:

no GHG emission benefit with natural gas hydrogen, 68% lower with renewables

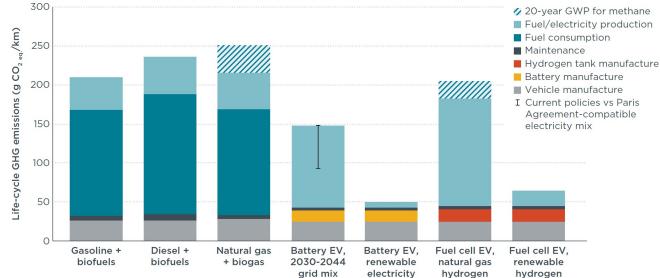


Life-cycle GHG emissions of average SUV segment cars registered in 2021

Hybrid electric vehicles (HEVs)

- Hybrid electric vehicles: 23%–27% lower fuel consumption than conventional gasoline cars in lower medium and SUV segment in Europe
 - = **20%–23%** lower lifecycle GHG emissions

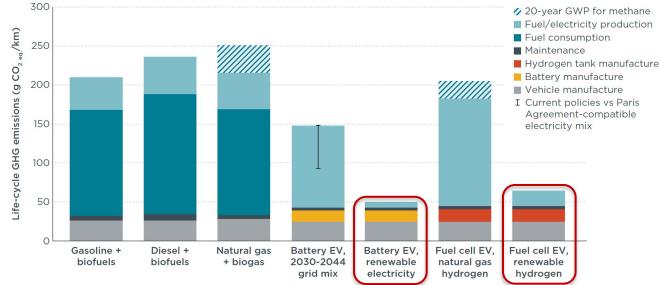
Life-cycle GHG emissions of average hybrid electric vehicles in Europe


India: Cars registered in 2030

- Gasoline cars include
 hybrid electric vehicles
- Diesel and CNG cars: no GHG emissions benefit
- Battery EVs: 30%–56% lower emissions with average grid mix, 79% lower with renewables
- Fuel cell EVs:

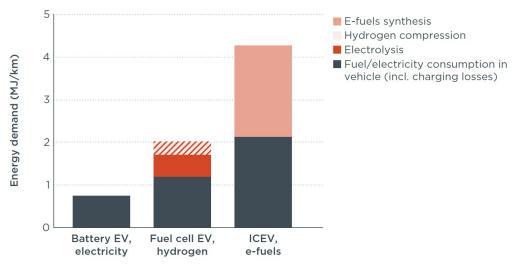
no GHG emission benefit with natural gas hydrogen, 68% lower with renewables

Life-cycle GHG emissions of average sedan segment cars projected to be **registered in 2030**


India: Cars registered in 2030

- Gasoline cars include
 hybrid electric vehicles
- Diesel and CNG cars: no GHG emissions benefit
- Battery EVs: 30%–56% lower emissions with average grid mix, 79% lower with renewables
- Fuel cell EVs:

no GHG emission benefit with natural gas hydrogen, 68% lower with renewables


Life-cycle GHG emissions of average sedan segment cars projected to be **registered in 2030**

Electricity, green hydrogen and e-fuels

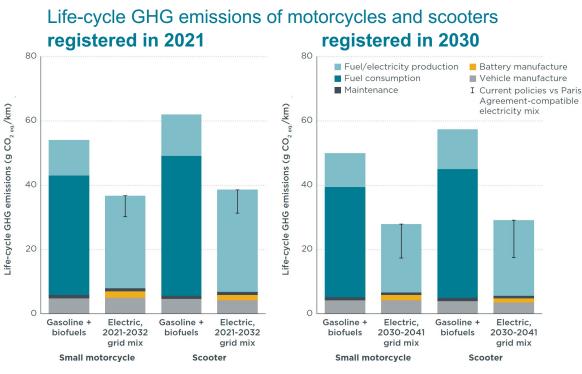
- Driving on renewable hydrogen is three times more energy intensive than battery EVs
- Driving on e-fuels is six times more energy-intensive than battery EVs
- E-fuels are **too expensive** and **too limited** to contribute to the decarbonization of road transport

Energy demand of driving medium size cars with electricity, renewable hydrogen, and e-fuels

India: Motorcycles and scooters

Battery electric motorcycles:

33%–45% lower emissions when registered in 2021


45%–66% lower emissions when registered in 2030

Battery electric scooters:

38%–50% lower emissions when registered in 2021

50%–70% lower emissions when registered in 2030

Anup and Deo (2021). Fuel consumption standards for the new two-wheeler fleet in India.

Key messages

- For cars registered today, battery EVs already show the lowest life-cycle GHG emissions of all available options
- Only battery EVs and hydrogen fuel cell EVs have the potential to be near zerocarbon on a life-cycle basis
- There is no realistic pathway to decarbonize combustion engine vehicles: the availability of e-fuels and low carbon biofuels is too limited to substantially reduce the emissions of the fuel mix

- To limit global warming to 1.5 °C, the global passenger car fleet needs to be largely electric by 2050
- India: With vehicle lifetime of 15 years, this requires that the registration of new combustion engine passenger cars is phased out by 2035–2040
- For **two-wheelers**, only electric motorcycles and scooters should be registered **after 2035**
- Fuel consumption standards are effective to increase the share of electric two-wheelers

Thank you! g.bieker@theicct.org

