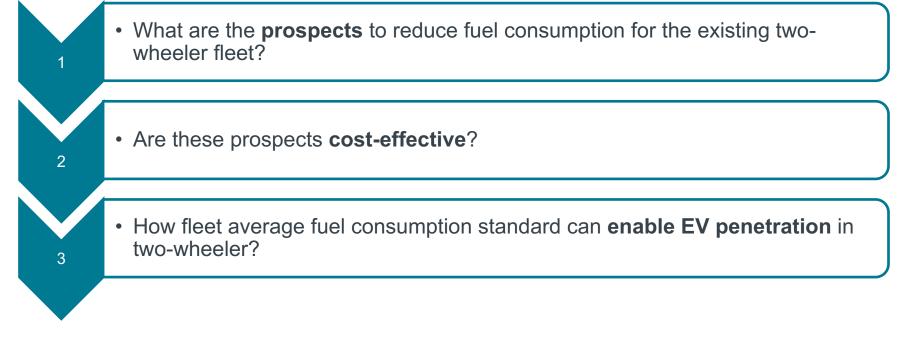

Fuel consumption reduction technologies for the two-wheeler fleet in India

20 April 2021 Sunitha Anup, Ashok Deo and Anup Bandivadekar

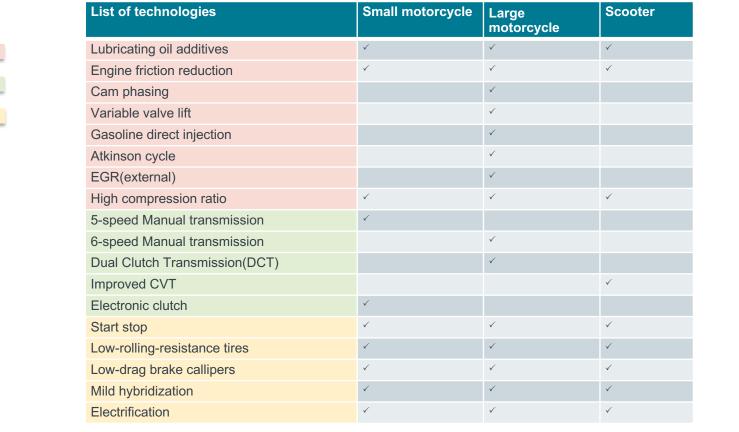

Two-wheeler market in India

- The adoption of fuel injection technology is a significant step in the technology level in twowheeler
- Motorcycle with engine displacement less than 150 cc continues to dominate the twowheeler market

Key questions of the study

Technology trend of the BS VI two-wheeler fleet

Technology type	Small motorcycle	Large motorcycle	Scooter
Engine	Fuel injection, capacitor charge ignition Compression ratio 9.9:1	Fuel injection, single spark electronic ignition Compression ratio 8.5:1	Fuel injection, spark injection Compression ratio 10:1
Transmission	4-speed manual	5-speed manual	Continuously variable transmission (CVT)



Possible technology additions for two-wheelers

Engine Technologies

Transmission technologies

Vehicle technologies

Cost-Benefit Analysis

Cost and benefits estimations (2025-2030)

Cost estimations:

 Direct manufacturing cost by vehicle category linked to incremental technology improvement for reducing fuel consumption

Benefit estimations:

- CO₂ reduction
- Fuel savings

Methodology-DMC cost & CO₂ benefit estimation

- Direct manufacturing cost(DMC) estimate of a technology= Cost of technology in EU passenger vehicle X Scaling factor X EU Labour cost adjustment X Inflation factor X Currency conversion to INR
- **CO₂ reduction benefit** from SAE papers & previous ICCT studies

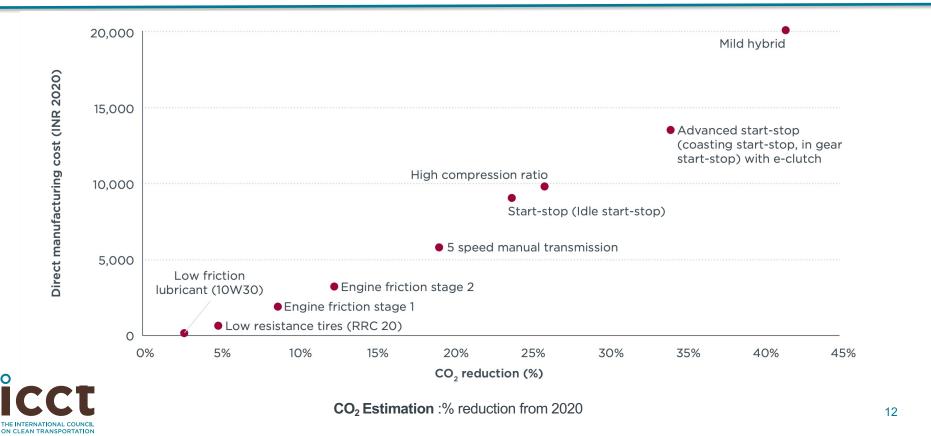
Methodology-individual DMC cost & CO₂ benefit in a **small motorcycle**

Technology	DMC (INR 2020)	Fuel consumption reduction benefits
Low-friction lubricant	203	2.8%
Low-rolling-resistance tires, low drag brakes	405	2.3%
High compression ratio	772	6.0%
Engine friction reduction	2,600	8%
5 speed manual transmission vs 4 speed	2,575	7.7%
Idle start-stop	3,253	7.7%
Advanced start-stop with e-clutch	3,707	8.0%
Mild hybridization	6,549	11.2%

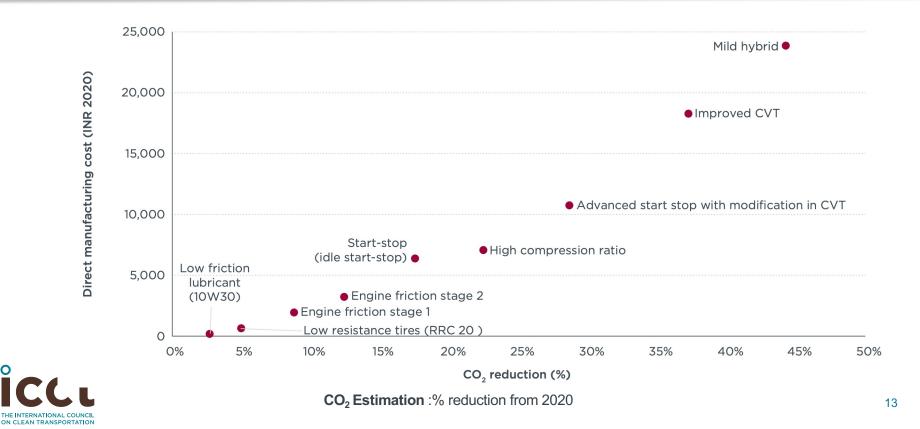
Methods

Methodology-individual DMC costs & CO₂ benefit in a **large motorcycle**

Technology	DMC(INR 2020)	Fuel consumption reduction benefits
Low-friction lubricant	203	2.8%
Low-rolling-resistance tires, low- drag brakes	405	2.3%
Intake cam phasing	625	3.0%
Exhaust cam phasing	1,131	1.5%
Engine friction reduction	2,600	4.4%
High compression ratio	1,603	6.0%
Idle start-stop	3,845	5.5%
Variable valve lift	4,548	3.0%
Advanced start-stop	5,342	8.0%
6-speed manual transmission vs. 5- speed	7,439	6.2%
GDI + EGR + Atkinson cycle	11,461	7.0%
Mild hybridization	13,604	9.0%
DCT	14,089	11.6%


Methods

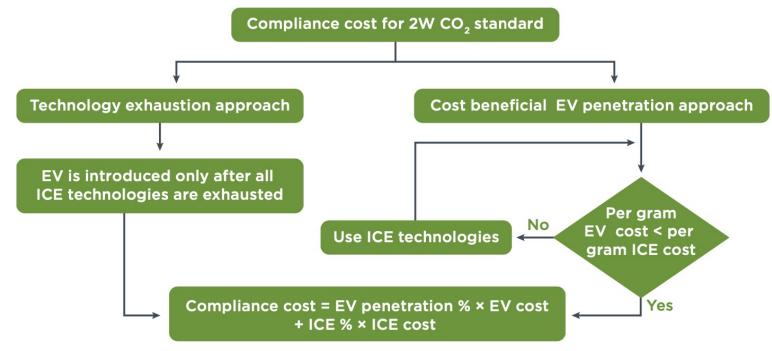
Methodology-individual DMC cost & CO₂ benefit in a **scooter**


Technology	DMC(INR 2020)	Fuel consumption reduction benefits
Low-friction lubricant	203	2.8%
Low-rolling-resistance tires, low drag brakes	405	2.3%
High compression ratio	661	6.0%
Advanced start stop with modification in CVT	3,693	8.0%
Engine friction reduction	2,600	8.0%
Idle start stop	3,174	5.8%
Mild hybridization	5,606	11.2%
Improved CVT	7,500	12.0%

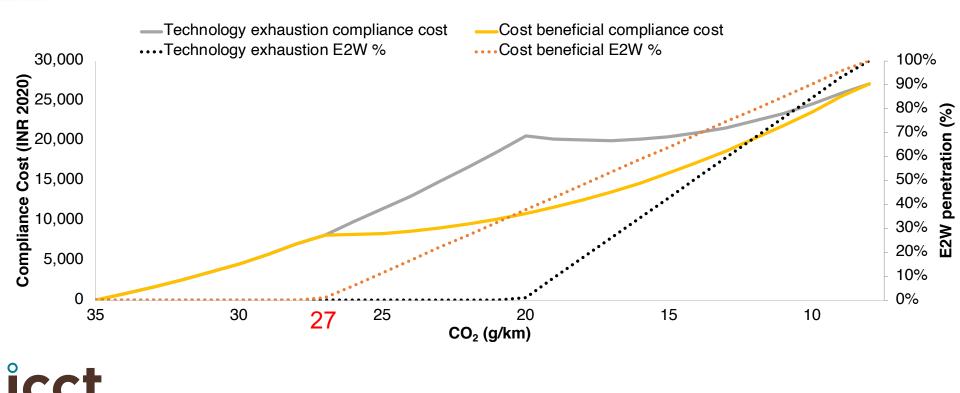
Methodology approach-incremental technologies for a small motorcycle

Methodology approach-incremental technologies for a scooter

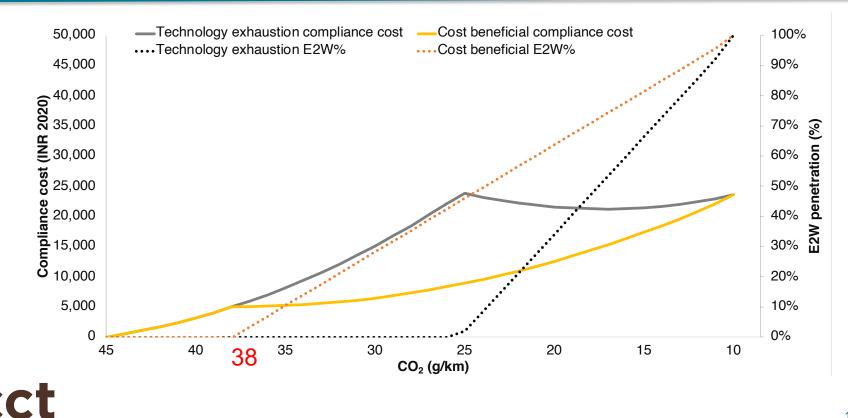
Methodology-**incremental cost** estimation of electric twowheeler(E2W)

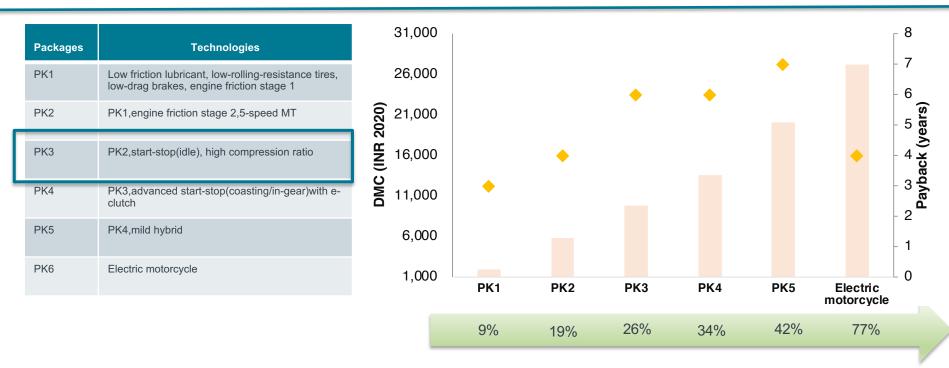

- Direct Manufacturing Cost(DMC) of an E2W reflects the addition of cost of components like battery, thermal management, inverter, control and power distribution module and exclusion of cost of ICE power train
- DMC of an E2W corresponds to **incremental cost** of the E2W as compared to the ICE model

Results


Estimation of compliance cost

ON CLEAN TRANSPORTATION

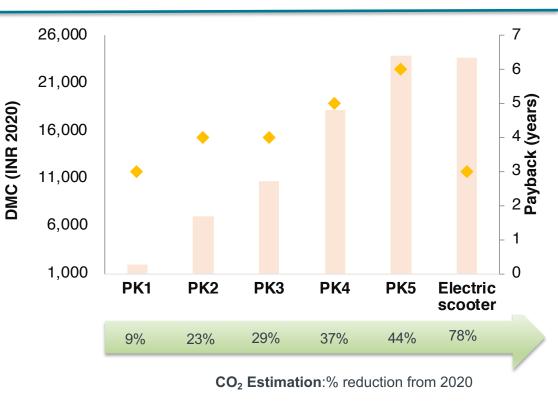

Cost effectiveness of technology vs electrification evaluated for 2025 in a motorcycle


17

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

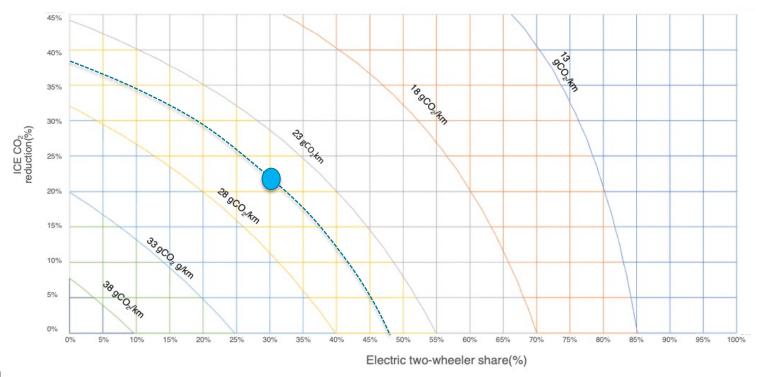
Cost effectiveness of technology vs electrification evaluated for 2025 in a scooter

Payback period* in a small motorcycle


CO2 Estimation:% reduction from 2020

*Based on fuel price of INR 90 per litre and average kilometer driven per year 10,000

Payback period* in a scooter


Packages	Technologies
PK1	Low-friction lubricant, low-resistance tires, low drag brakes, engine friction stage 1
PK2	PK1, engine friction stage 2, start-stop, high compression ratio
PK3	PK2, advanced start-stop with modification in CVT
PK4	PK3, improved CVT
PK5	PK4, mild hybrid
PK6	Electric scooter

* Based on fuel price of INR 90 per litre and average kilometer driven per year 10,000

Fleet average levels achieved for different electric two-wheeler share & ICE technology improvement

Results

Achieving the **fleet average level** of 25.3 gCO₂/km for 2025

By exhausting the ICE technologies

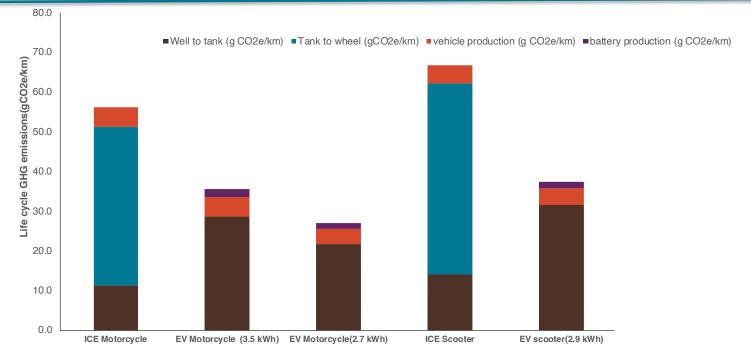
Туре	Segment share(%)	ICE share of segment (%)	EV share of segment(%)	Compliance cost (INR 2020)
Small motorcycle	60	100	0	18,589
Scooter	30	100	0	22,069
Large motorcycle	10	100	0	6,346
Fleet average	100	100	0	18,409

By cost beneficial EV penetration

Туре	Segment share(%)	ICE share of segment (%)	EV share of segment(%)	Compliance cost (INR 2020)
Small motorcycle	60	68	32	10,118
Scooter	30	58	42	8,327
Large motorcycle	10	100	0	6,346
Fleet average	100	68	32	9,203

Achieving the fleet average level of 20.5 gCO₂/km for 2030

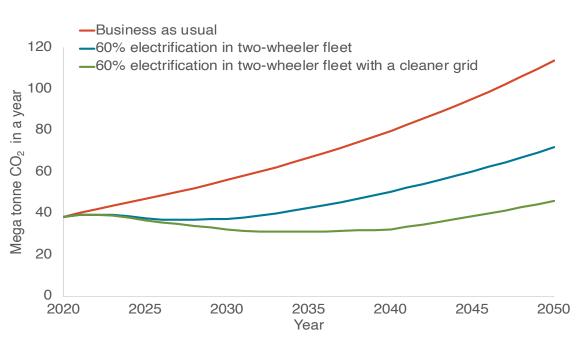
By exhausting the ICE technologies


Туре	Segment share(%)	ICE share of segment (%)	EV share of segment(%)	Compliance cost (INR 2020)
Small motorcycle	60	67	33	14,970
Scooter	30	66	34	16,388
Large motorcycle	10	100	0	6,285
Fleet average	100	70	30	14,525

By cost beneficial EV penetration

Туре	Segment share(%)	ICE share of segment (%)	EV share of segment(%)	Compliance cost (INR 2020)
Small motorcycle	60	31	69	5,577
Scooter	30	32	68	10,217
Large motorcycle	10	100	0	6,285
Fleet average	100	38	62	7,024

Life cycle GHG emissions* for 2030 for gasoline and electric twowheelers in India



Results

*Based on carbon intensity of the electricity mix of IEA stated policies scenario for India(includes transmission & distribution loss in the grid) and share of gasoline blend (ethanol) to increase from 5%-12% in the time frame of 2020-2030

Electrification benefits on environment

- With 60% electrification* of twowheeler segment, cumulative 2021-2030 emission reduction are 117 Mt and cumulative fuel savings is ~49 Mtoe
- By 2040, the cumulative emission reduction are 487 Mt and cumulative fuel savings is ~187 Mtoe

*Based on Indian grid carbon intensity of 170.3 gCO₂/MJ in 2020, 94.2 gCO₂/MJ in 2030 and 23.3 gCO₂/MJ in 2040 for cleaner grid

Summary and Recommendations

- Post BSVI fuel injection technology allows two wheelers to incorporate many cost-effective ICE technologies.
- ICE technologies are cost effective as compared with EV till 23% of CO₂ reduction.
- Fleet average CO₂ reduction target of 25 gCO₂/km for 2025 will enable ~30% EV and 20 gCO₂/km for 2030 will enable ~60% EV in 2W.

Questions? Contact <u>sunitha.anup@theicct.org</u> or <u>a.deo@theicct.org</u> or <u>anup@theicct.org</u> <u>ICCT India</u>: https://theicct.org/india

Comparison of average consumption of ICE 2W and Electric 2W

Vehicle type	Real world consumption*
Electric Motorcycle(100 km range,3.5 kWh)	3.7 kWh/100km
ICE Motorcycle(97.2 cc)	1.79 litre/100 km(eqvt** to 17.41 kWh/100km)
Electric Scooter(75 km range,2.9 kWh)	4.1 kWh/100km
ICE Scooter(109.5 cc)	2.21 litre/100km(eqvt** to 21.49 kWh/100km)

*Based on real world values ~20% more than declared values. **Based on the conversion factor for passenger cars

Methodology-scaling factor estimation

List of technologies	Scaling parameter	
Lubricating oil additives	No scaling	
Engine friction reduction	Number of cylinder	
Cam phasing	Number of cylinder	
Variable valve lift	Number of cylinder	
GDI	Number of cylinder	
EGR (external)	Number of cylinder	
High Compression ratio	Engine power	
Atkinson cycle	Engine power	
5/6 speed Manual transmission	Torque ratio	
6 speed Manual transmission	Torque ratio	
DCT/Electronic clutch	Torque ratio	
Start-stop	Engine power. Sensors reman non-variable	
Low-rolling-resistance tires & Low-drag brake calliper	RRC value	
Mild hybridization	Motor power. Sensors remain non-variable	
Electrification	Energy consumption	

Effect of multiplier credit- One EV sold is counted as multiplier times for CO_2 calculation

CO ₂ level (g/km)	EV % for no credits	EV% for 2 multiplier credit	EV% for 3 multiplier credit
25.3	32	29.2	23.1
20.5	62	46.9	38.2

