Zero emission Truck cost estimation – India

Final Report

13 April 2023

Table of Contents

Project Summary

- WP 1: Baseline Cost & Weight estimation
- ▶ WP 2: Cost projections for Key ZET components
- ▶ WP 3: Evaluation of existing supply chain & localization potential

Appendix

Project Summary

EYP conducted expert & supplier discussions to estimate vehicle BoM cost; Volume, technology, raw material & policy changes will drive component cost projections till 2040

WP#1: Baseline Cost & Weight Estimation	WP#2: Cost Projections for key ZET components
 Scope Create vehicle bill of materials (BOM) for a traditional ICE vehicle, electric truck, and electric bus for study Compile price & weight related information for components listed in the BOM from supplier Carry out bottom-up costing where supplier information is not sufficient Our Approach EYP used a combination of experts & suppliers discussion, secondary research, supplier quotations & EYP internal data to estimate BoM Cost & Weight for an electric bus, electric truck and diesel truck 	 Scope Use the baseline estimates of component costs derived in WP 1 for future projection of identified components Factor in influential factors such as increased demand, technology evolution, etc and their impact on cost projections Develop an overall cost reduction model to forecast a system cost scenario for 2040 Our Approach EY-P used a combination of factors to arrive at the cost projections till 2040 with key considerations given to battery, motor and power electronics Influential factors taken into considerations were technology evolution, raw material costs, economies of scale, policy, and productivity to project costs to 2040
Results 53% 7	Results Image: Battery Pack costs in India are likely to fall by 50-60% by 2040 Image: Battery Pack costs in India are likely to fall by 50-60% by 2040 Image: Battery Pack costs in India are likely to fall by 50-60% by 2040 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 3000 Image: Battery Pack costs likely to drop to 2400- 30

Project Summary

Supply chains of critical ZET components were analyzed along with their potential for localisation

Table of Contents

- Project Summary
- ► WP 1: Baseline Cost & Weight estimation
- ▶ WP 2: Cost projections for Key ZET components
- ▶ WP 3: Evaluation of existing supply chain & localization potential
- Appendix

Page 5

EYP has used combination of discussion with experts & suppliers, supplier quotations & internal data to estimate BoM Cost & Weight for the considered vehicles

BoM Cost & Weight Estimation Methodology

EYP in addition to engaging with the suppliers, also tapped into subject matter experts, EYP resources & secondary research to estimate & validate BoM cost & weight for the electric vehicle

EYP began with identifying a long-list of 140+ suppliers for the Cost Identification of various components present in BOM, successfully reaching out to over 20 suppliers

EY Parthenon

TATA Starbus EV has been shortlisted for BOM Analysis; The main components to be used for the cost study have been identified along with necessary specifications

Electric Bus Model Identification

* For the purposes of this report, battery type taken is LFP for the bus

1: Gross Vehicle Weight

Source: Company website, Discussion between ICCT & EYP, EY-Parthenon analysis

Page 8

Powertrain (Battery & Motor) accounts for ~53% of the BoM cost; Body + Chassis, Electronics & Electricals constitute remaining ~25% of BoM Cost of e-bus

Body + Chassis system accounts for ~56% of the overall component weight for e-bus; Powertrain and drivetrain accounts for ~36% of the remaining weight

The Battery System in the electric bus makes up ~43% of the overall BOM cost, making it one of the primary cost drivers for the overall vehicle

Motor & its components account for ~10% of the overall BoM cost & ~2% of overall component weight of e-bus; Inverter is ~20% of the overall delivered cost of the motor

Page 12

Source: EY-Parthenon analysis, Supplier Quotation, Expert Interviews

The Drivetrain systems makes up for ~11% of the overall cost of the Electric Bus and covers for ~19% of overall component weight

The Body and Ladder frame Chassis systems of the Electric Bus makes up for ~17% of the overall cost but covers for ~56% of overall component weight

Page 14

Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

The Electrical and Electronics systems make up ~8% the total BOM cost, with power electronics accounting for more than 50% of that cost

The eHVAC system and accessories makes up for ~11% of the overall cost and covers for ~5% of the component weight; eHVAC accounts for majority of the cost

Electric Truck to be used for BOM analysis will be based on a virtual model by EYP; Main components to be used for BOM have been identified

1: Gross Vehicle Weight

Source: Company website, Discussion between ICCT & EYP, EY-Parthenon analysis

Powertrain (Battery & Motor) accounts for ~81% of the BoM cost; Body + Chassis, Electronics & Electricals constitute remaining ~19% of BoM Cost of e-truck

Axle, Braking, Suspension, Ladder frame, Load Body and Tires & wheels systems are kept common across the Diesel and Electric Truck

GST: Goods and service tax

Source: EY-Parthenon analysis, Supplier quotations, Triangulation from expert interviews

Page 18

Body + Chassis system accounts for ~34% of the overall component weight for e-truck; Powertrain and electronics systems account for ~38% of remaining weight

The Battery System in the electric truck makes up ~72% of the overall BOM cost, making it one of the primary cost drivers for the overall vehicle

* Energy density of NMC batteries can vary highly according to various types based on nickel percentage in the battery, * 1 USD = 80 INR BMS: Battery Management System Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

Motor & its components accounts for ~11% of the overall BoM cost & ~3% of overall component weight of e-truck; Inverter is ~20% of the overall delivered cost of the motor

Page 21

The Drivetrain systems makes up for ~8% of the overall cost of the Electric Truck and covers for ~28% of overall component weight

The Body and Ladder frame Chassis systems of the Electric Truck makes up for ~4% of the overall cost but covers for ~34% of overall component weight

The Electronics system and accessories make up ~7% the total BOM cost, with power electronics accounting for more than 50% of that cost

Technical Specs					
High Voltage (V)	600				
Low Voltage (V)	24				
System Weight (kg)	300				

- The power electronics system includes the PDU¹, DC/DC converters, junction box and the auxiliary motor inverters and their respective control units
- The auxiliary motor control units and inverters are considered separately from the traction motor control unit and inverter
- An Onboard Charger has been omitted from the design after consideration of real-world use-case scenarios wherein charging typically takes place through high voltage DC fast chargers
- The wiring harness weight is primarily comprised of the HV wiring required to deal with the high system operating voltage, running across the length of the truck
- The LV wiring harness is responsible for all electrical connections, lightings, cabin lights etc.
- Accessories & others include the bolts, nuts, rivets, fasteners, rearview mirrors, bumpers etc.

16T GVW

TATA 1.6 Ultra Truck to be used for the Cost study of ICE based HDV; Components needed for BOM analysis have been identified along with necessary specifications

Diesel Truck Model Identification

Powertrain (Engine & Transmission) accounts for ~43% of the BoM cost; Drivetrain and Body + Chassis system constitutes remaining ~52% of BoM Cost of the diesel truck

GST: Goods and service tax | Axle, Braking, Suspension, Ladder frame, Load Body and Tires & wheels systems are kept common across the Diesel and Electric Truck

1: Includes Fuel system, Thermal Management system and exhaust system

2: Includes Clutch, Transmission and Pressure plate

Source: EY-Parthenon analysis, Supplier quotations, Triangulation from expert interviews

Body + Chassis system accounts for ~43% of the overall component weight for the truck; Powertrain & drivetrain accounts for ~54% of the remaining weight

Axle, Braking, Suspension, Ladder frame, Load Body and Tires & wheels systems are kept common across the Diesel and Electric Truck

1: Includes Fuel system, Thermal Management system and exhaust system

2: Includes Clutch, Transmission and Pressure plate

Source: EY-Parthenon analysis, Supplier quotations, Triangulation from expert interviews

Engine & Transmission combined accounts for ~43% of the overall BOM cost, making it one of the primary cost drivers for the overall vehicle

The Drivetrain systems makes up for ~29% of the overall cost of the Diesel Truck and covers for ~36% of overall component weight

The Body and Ladder frame Chassis systems of the Diesel truck makes up for ~23% of the overall cost and covers for ~43% of the overall component weight

Page 30

The Wiring harness & accessories make up ~5% the total BOM cost, with wiring harness accounting for ~45% of that cost

EYP has internally developed scaling factors for different systems and sub-systems of the electric bus based on various scaling parameters and specifications of the systems

System	Scaling Parameter	Existing Cost (₹)	Specifications	Scaling Factor	
Battery Pack	kWb rating of the battony	28,20,400		19400 ₹ / WMb	
BMS	kwin rating of the battery	6,02,000		10400 X / KVVII	
Motor	kW rating of the motor	6,40,000	160 kW	5000 ₹ / VM	
Control Unit/Inverter	kw rating of the motor	1,60,000	100 KVV	5000 K / KVV	
Battery Thermal Management	kW rating of the system	2,25,000	8 kW	28125₹/kW	
Chassis	Weight of the frame	1,90,000	1080 kg	175.9₹/kg	
Bus Body Structure	Weight of the structure	7,80,000	4380 kg	178.1₹/kg	
Braking System*	Diameter and number of the brake drums	130000	325 mm	100 ₹ / mm	
Front Axle	Front and Boor cyle rating in tan	45000	7.7 ton	5844.2 ₹ / ton	
Rear Axle	FIGHT and Rear axie failing in ton	60000	10.2 ton	5882.4 ₹ / ton	
Front Tires + Wheels	Diamatar and number of the wheel rime	70,000	20 inch	1,000 ₹ / inch	
Rear Tires + Wheels	Diameter and number of the wheel hins	70,000	20 Inch		
Power Steering	Front axle rating in ton	2,27,305	7.7 ton	29,520.1 ₹ / ton	
Front Suspension	Front and Poor axla rating in tan	85,000	7.7 ton	11039.0 ₹ / ton	
Rear Suspension	FIGHT and Real axie failing in ton	1,70,000	10.2 ton	16666.7 ₹ / ton	
Driveshaft	Weight of the system	15,000	20 kg	750 ₹ / kg	
Power Electronics	kW rating (only applicable for the DC-DC converter)	3,50,000	1,00,00 for 5kW DC-DC converter	20000₹/kW	
HV Wiring Harness	Weight of the complete wiring system	2,28,000	170 kg	1345 ₹ / kg	
LV Wiring Harness	Weight of the complete wiring system	1,00,000	80 kg	1250 ₹ / kg	
Compressor	Pressure rating of the compressor	90,000	10 bar	9000 <i>₹</i> / bar	
eHVAC	kW rating of the AC	4,00,000	22 kW	18182₹/kW	

Scaling factors for various systems – Electric Bus

5 12M Bus

S Click to go to comments for scaling factors considered for electric bus and electric trucks

*For scaling factor calculation, the braking system also includes the brake pedals, drums, brake shoes and chambers (unlike the BOM calculation), axle system is separate from the braking unit Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

EYP has internally developed scaling factors for different systems and sub-systems of the electric truck based on various scaling parameters and specifications of the systems

Scaling factors for various systems – Electric Truck

	•				
System	Scaling Parameter	Existing Cost (₹)	Specifications	Scaling Factor	
Battery Pack	Why rating of the better (48,58,739			
BMS	kwn raung of the battery	12,14,685			
Motor		6,40,000	400 100	5000 7 / 114/	
Control Unit/Inverter	kw rating of the motor	1,60,000	160 KVV	5000 ₹ / KW	
Battery Thermal Management	kW rating of the system	2,25,000	8 kW	28125₹/kW	
Ladder frame	Weight of the frame	1,58,333	900 kg	175.9₹/kg	
Truck Load Body	Weight of the structure	1,20,000	900 kg	133.3 ₹ / kg	
Braking System*	Diameter and number of the brake drums	120000	410 mm	73.2 ₹ / mm	
Front Axle	Front and Door cute notion in ten	35000	6 ton	5833.3 ₹ / ton	
Rear Axle	Front and Rear axie rating in ton	50000	10 ton	5000 ₹ / ton	
Front Tires + Wheels		60,000	20 in ch	957 1 7 / in ch	
Rear Tires + Wheels	Diameter and number of the wheel hims	60,000	20 inch	857.1 ₹ / Incn	
Power Steering	Front axle rating in ton	1,77,120	6 ton	29,520.1 ₹ / ton	
Front Suspension	Front and Door orde ration in tan	20,000	6 ton	3333.3 ₹ / ton	
Rear Suspension	Front and Rear axie rating in ton	25,000	10 ton	2500 ₹ / ton	
Driveshaft	Weight of the system	15,000	20 kg	750 ₹ / kg	
Power Electronics	kW rating (only applicable for the DC-DC converter)	3,50,000	1,00,00 for 5kW DC-DC converter	20000₹/kW	
HV Wiring Harness	Weight of the complete wiring system	1,60,000	119 kg	1345 ₹ / kg	
LV Wiring Harness	Weight of the complete wiring system	40,000	40 kg	1000 ₹ / kg	
Compressor	Pressure rating of the compressor	90,000	10 bar	9000 ₹ / bar	

Page 33

A 16T GVW

EYP has internally developed scaling factors for different systems and sub-systems of the diesel truck based on various scaling parameters and specifications of the systems

Scaling factors for various systems – Diesel Truck

System	Scaling Parameter	Existing Cost (₹)	Specifications	Scaling Factor		
Engine	Kilowatt rating of the engine	585000	132 kW	4431.8₹/kW		
Transmission System	Input Torque rating	140000	590 Nm	237.3 ₹ / Nm		
Ladder Frame	Weight of the frame	158333.3	900 kg	175.9 ₹ / kg		
Load Body	Weight of the load body	120000	900 kg	133.3 ₹ / kg		
Driveshaft	Weight of the system	40000	60 kg	666.7 ₹ / kg		
Braking System*	Diameter and number of the brake drums	120000	410 mm	73.17 ₹ / mm		
Front Suspension	Front and Dear ovia rating in tan	20000	6 Ton	3333.3 ₹ / kg		
Rear Suspension	Front and Rear axie rating in ton	25000	10 Ton	2500 ₹ / kg		
Compressor	Pressure rating of the system	20000	10 bar	2000 ₹ / bar		
Front Axle	Front and Dear over rating in tan	35000	6 Ton	5833 ₹ / ton		
Rear Axle	From and Real axie failing in ton	50000	10 Ton	5000 ₹ / ton		
Steering	Front axle rating in ton	65000	6 Ton	10833 ₹ / ton		
Front Tires + Wheels	Diamator and number of the wheel rime	120000	20 inch	957 1 ₹ / inch		
Rear Tires + Wheels		120000		007.1 3 / 11101		
LV Wiring Harness	Weight of the complete wiring system	40000	40 kg	1000 ₹ / kg		

*For scaling factor calculation, the braking system also includes the brake pedals, drums, brake shoes and chambers (unlike the BOM calculation), axle system is separate from the braking unit Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

3 16T GVW

Scaling factors apply to all trucks with similar axle configuration, the error margins (derived ex-showroom vs actual) for reference 7T, 28T & 48T are all <5%

BoM costs of various Tata Tucks based on EYP scaling factors; Tata T7 Ultra, Tata signa 2818 and 4825 have been used for the analysis across various GVW's

Scaling factors for various systems – Diesel Truck							
		Tata T7 I	Jltra (7T)	Tata Sig	na (28T)	Tata Signa (48T)	
System	Scaling Factor	Specifications	Cost (₹)	Specifications	Cost (₹)	Specifications	Cost (₹)
Engine	4431.8 ₹ / kW	100 Kw	4,43,182	140 Kw	6,20,455	186 Kw	8,24,318
Transmission System	237.3 ₹ / Nm	300 Nm	71,186	850 Nm	2,01,695	950 Nm	2,25,424
Cabin (interior, exterior, windshield, instrument)	-	-	50,000	-	1,21,000	-	1,32,000
Ladder Frame	175.9 ₹ / kg	300 kg	52,778	1100 kg	1,93,519	1350 kg	2,37,500
Load Body	133.3 ₹ / kg	247 kg	33,043	1100 kg	1,46,667	1350 kg	1,80,000
Driveshaft	666.7 ₹ / kg	20 kg	13,333	67 kg	45000	77 kg	51,320
Braking System (incl. drum, shoe, hydraulics & ABS)	73.17 ₹ / mm	275 mm	1,20,732	410 mm	1,80,000	410 mm	3,00,000
Front Suspension	3333.3 ₹ / kg	3.1 Ton	10,333	7 Ton	23,333	7 Ton	23,333
Rear Suspension	2500 ₹ / kg	4.2 Ton	10,500	21 Ton	52,500	21 Ton	52,500
Compressor	2000 ₹ / bar	10 bar	20,000	10 bar	20,000	10 bar	20,000
Front Axle	5833 ₹ / ton	3.1 Ton	18,083	7 Ton	40,833	7 Ton	40,833
Rear Axle	5000 ₹ / ton	4.2 Ton	21,000	21 Ton	1,05,000	21 Ton	1,05,000
Steering	10833 ₹ / ton	3.1 Ton	33,583	7 Ton	75,833	7 Ton	75,833
Tires + Wheels	857.1 ₹ / inch	20 inch	54,857	20 inch	1,71429	20 inch	2,74,286
LV Wiring Harness	1000 ₹ / kg	26.12 kg	26,122	46 kg	46,000	46 kg	50,000
Accessories & Others	-	-	25,000	-	50,000	-	60,000

Ъ

Table of Contents

- Project Summary
- WP 1: Baseline Cost & Weight estimation
- WP 2: Cost projections for Key ZET components
- ▶ WP 3: Evaluation of existing supply chain & localization potential
- Appendix

Battery, motor & PE currently accounts for ~60% of the BOM cost; Factors such as technology, economies of scale, raw material & policy will influence the costs till 2040

Cost Projections of Key EV Components

E	lectric Bus	Methodology		
	A THINKING IN THE AVERAGE	EY-P has used a combination of key consideration of the following	of factors to arriving components	ve at the cost projections till 2040 with
		Battery	Motor	Power Electronics
		Critical Cost Driving Factors		
Technology Evolution	New technologies in Battery, Moto cost & efficiency	r & Power Electronics that are likely to	o influence	NMC: NCA to be the current dominant technology given its commercial maturity; P with potential replacement opportunity, solid state shows potential post 2027 Lithum Batteries - Technology Readmap Setter system are antiguated to update from Ose 3 to Ose 4 and 20 para with an indexe 1 mergy deally Setter system are antiguated to update from Ose 3 to Ose 4 and 20 para with an indexe 1 mergy deally Lithum Batteries - Technology Readmap Setter system are antiguated to update from Ose 3 to Ose 4 and 20 para with an indexe 1 mergy deally Lithum Batteries - Technology Readmap Setter system are antiguated to update from Ose 3 to Ose 4 and 20 para with an indexe 1 mergy deally Lithum Batteries - Technology Readmap Lithum Batteries - Technology Readma
Economies of Scale	Increased volumes would impact r the overall supply chain	manufacturing efficiencies, component	t costs and	Consistent Television Construct Telev
Raw Material Costs	Pricing trends of raw materials like impact the cost of key components	e Copper, Lithium, Magnesium, etc. wo s	ould directly	Name Descent datage server & is not a server
Policy	Policies & incentives for component influence cost & availability of E-C	nt manufacturing and EV sales are like	ely to	 ¹ Bits (b) ² Stach (DT hundra ¹ Valica) Ter 1 Supplers are working on SC-Cases ¹ Stach (DT hundra ¹ Valica) Ter 1 Supplers are working on SC-Cases ¹ Stach (DT hundra ¹ Stach (DT hundra ¹ Valica) ¹ Valica ¹ Valica
Productivity	Increased sales volumes & mature efficiency of manufacturing and wo	e supply chains would increase produc ould impact costs	ctivity &	1000 Based System using Nyndrafis 1100 ES 1100

CV volume projections till 2040 could be laid out in different scenarios which will impact the electrification penetration but will ensure sufficient scale to lower the component costs

Regardless of the different scenarios for 2040 for commercial vehicles, there will be sufficient volumes of electric trucks & buses spaced out between top 3-4 OEMs which will help reduce the cost of key components by 2040

India's battery demand by 2030 is likely to account for $\sim 3\%$ of the global demand; manufacturing efficiency is likely to increase cell to pack ratio by 2030

*Li-lon Battery demand includes the demand coming from End-of-Life EV Batteries after 2027, Battery life being assumed at 8 years. The demand does not include the demand coming from ESS and others

1: 3-W include light cargo and goods carrier vehicles

2: CV comprises of Buses only Source: Secondary Sources, EY-Parthenon analysis 📩 Click to go to methodology for battery demand 🕺 Click to go to ACC PLI scheme-based Li-ion battery supply in India

Page 40

Relick to go to Niti Aayog scenario comparison

Li-Ion chemistry to be the dominant technology for the foreseeable future given its maturity; Next frontier technologies such as solid-state, sodium-ion shows potential post 2027

The different generation of chemistries has been developed by EYP based on secondary sources and EYP understanding to notify the battery technology development, The roadmap is applicable in general to all EVs

* Delivered battery pack costs in the Indian Market

Source: Secondary Sources, Public domain, EYP Database

Battery Pack costs in India are likely to fall by ~50-60% by 2040 with raw material costs, volumes & local production driving most of the cost reduction with tech improvements

Battery Pack Cost Estimates for India (2022-2040) (in '000 ₹/kWh)

- ● India NMC Battery Pack Costs ('000 ₹/kWh)
- -●- India LFP Pack Costs ('000 ₹/kWh)
- ● Global Pack Costs ('000 ₹/kWh)

- For 2022, the delivered cost of Battery Packs (incl. BMS) in India is 220-240 \$/kWh for LFP and 250-260 \$/kWh for NMC
- Cells are imported, primarily from China, and battery pack is assembled locally with BMS
- LFP market share forecast to double to ~70% by 2030 while NMC market share estimated to halve to ~30% by 2030 in India
 - By 2030, NMC battery packs will be used mainly in long range, weight sensitive applications while LFP will gain more traction in the low range space
 - LFP chemistry has higher thermal stability and hence is more suitable for Indian temperature conditions
- Geological survey of India recently found "inferred resources" of 5.9 million tonnes of lithium in Jammu and Kashmir. Since, these are inferred resources and no prior feasibility study has been done, the time taken to materialise will be a very lengthy one and hence the discovery has not been used in the battery pack cost forecasting
- Primary factors for cost reduction -
 - Higher Battery Demand due to EV Penetration Higher production volumes resulting from higher lithium-ion battery demand will help lower cell cost and reduce the cell to pack conversion cost
 - Localization of cell production In line with the ACC PLI scheme, Indian companies are likely to start indigenous cell production, major cell production capacity is expected to come online by 2027

* 1 USD = 80 INR

Inflation not considered as part of forecasted costs

📩 Click to go to Electric Bus Cost Forecast slide 📩 Click to go to ACC PLI Scheme slide 📩 Click to go to Electric Truck Cost Forecast slide

Source: Secondary Sources, Reports, Public Domain, BNEF Data, EY-Parthenon analysis

Reduction in motor costs in India are likely to be attributed to the surge in volumes; BoM cost of motor suggests scope for import duty reduction due to localization

Page 43

Compact designs requirement are driving greater functional integration of components; Advanced cooling methods, materials and manufacturing to enhance performance

Motor costs in India are likely to fall by 40-50% by 2040 with volumes & local production driving majority of the cost reduction followed by technological improvements

Motor Cost Projections for India (2022-2040) (in '000 ₹/kW)

Click to go to Electric Bus Cost Forecast slide

Click to go to Electric Truck Cost Forecast slide

Page 45

For forecasting PE costs, impact of volume, localization & technology was taken into consideration; The largest cost driver was the material cost for both PE components

^{1:} Sales, Goods and Admin Costs

2: Other costs include import duties, amortized labor, equipment, facility and maintenance costs Source: Secondary Sources, EY-Parthenon analysis

Power Electronics Cost Breakdown

DCDC converters

- Power converters require higher R&D due to their reliance on semiconductor components. Majority (~66.6%) of R&D cost for DCDC is attributed to software development
- Hardware costs are expected to have an YoY decrease at 2-4% in the initial years, settling down to 1-2% for the consecutive years
- R&D costs are increasing in absolute terms over 2030 and 2040, however they're being amortized over higher volumes sold
- As a result, R&D contributes to 10% of the total cost in 2022, 2% in 2030, and 1% in 2040
- Impact of localization for HV DCDC converters for CVs has been kept relatively low (up to 3%) by 2040

PDU

- Primary purpose of a PDU is to safely distribute power to multiple high voltage components, such as the DCDC converter, AC Compressor, Battery Chiller, etc.
- Hardware components contribute more (~70%) to the overall costs due to the nature of the product
- Majority of hardware costs (~90%) in PDU comprise of passive and electrical components (fuses, bus bars and connectors)
- PDUs don't utilize semiconductor components (<5% of BOM cost) within the device and hence a higher impact of localization (up to 4% in 2040) has been taken into consideration of PDUs

The future trend in the power electronics components is the use of Wide Band Gap Semiconductors with deep integration of components as DCDC and Inverter together

PE costs comprising of a DCDC converter and PDU are expected to fall by ~15%, driven by increase in volume of e-CVs and decrease in hardware costs

1. WBG: Wide Band Gap Source: Secondary Sources, EY-Parthenon analysis

Click to go to Electric Bus Cost Forecast slide

Page 48

Click to go to Electric Truck Cost Forecast slide

Electric Bus Cost likely to decrease by ~37% by 2040 as compared to 2022; Battery Pack, Motor and Power Electronics to the key areas of cost reduction

Source: EY-Parthenon analysis

Page 49

Electric Truck Cost likely to decrease by ~53% by 2040 as compared to 2022; Battery Pack, Motor and Power Electronics to be the key areas of cost reduction

Source: EY-Parthenon analysis

Cost of Electric Truck

Page 50

Diesel Truck Cost likely to increase by ~24% in 2040 as compared to 2022; Engine and transmission upgrades, to meet stricter emissions norms, are the primary cost drivers

Table of Contents

- Project Summary
- WP 1: Baseline Cost & Weight estimation
- ▶ WP 2: Cost projections for Key ZET components
- ► WP 3: Evaluation of existing supply chain & localization potential
- Appendix

EYP has laid out the value chain of the Battery, Motor & PE to indicate current status of localization & then use external factors to determine the localization potential

Indian local battery manufacturing value chain is very new and key areas such as materials extraction, cell manufacturing, R&D are still under development

Source: Secondary Sources, Company websites, EY-Parthenon analysis

Given the challenges in China's supply chain, battery manufacturers are setting up local supply chains; India to have a total cell manufacturing capacity of ~93 GWh by 2030

Click to go back to Li-ion battery demand slide

Currently, cells for batteries are imported, with packs being assembled locally; Efforts are being made to locally manufacture cells with results expected to mature after 2027

Battery – Localization Potential in India

EY Parthenon

Page 56

Localization of Battery Pack Manufacturing

- Anode, cathode and electrolyte development is heavily dependent on raw materials. India to continue importing raw materials globally with an aim to localize the manufacturing of anode and cathode materials
- Players like Himadri, Epsilon and HEG have started investments in the anode space
- Cathode and electrolyte development initiatives are lacking, and India is likely to continue importing these
 materials in the long term
- Cells for the battery pack are majorly being imported, however, local manufacturing plans have been announced and is likely to be localised under the ACC PLI scheme. India to have a ~93 GWh cell manufacturing capacity by 2030 with major investments coming in from OLA, Reliance and Exide Industries
- Battery pack assembly has started in India and has been localized to some extent with new players mushrooming in this space. While cell making is heavy on investment & technology, battery pack manufacturing is relatively lighter on both these parameters, thereby lowering the entry barrier and attracting non-traditional battery manufacturers & start-ups.
- Emerging companies like Octillion, Tata Autocomp, Exicom, Lohum, are building up capacities by importing cells globally and assembling them with the integrated BMS and BTMS in India

Relative Localization

Scale

- BMS has a high potential for localization. BMS is currently fragmented with a few large and emerging players and competition from Chinese imports. Semiconductor components will continue to be imported in the long term
- Battery thermal management system (BTMS) is another sub-system which has a high potential for localization. Currently, the heat exchanger, pipes, valves and compressor are components that are being locally manufactured with e-pumps being imported

For the electric motors, component casing & system integration is done locally while the inverter & control systems manufacturing is yet to be started

Raw Material Availability and Design & development capabilities will influence the localization of rotors, stators, brackets / end plates etc. in India in the next 2-3 years

These capabilities have relatively low capital requirements

raw material availability, design & development capabilities

With the introduction of the PLI scheme, local players are investing in to capabilities across the Power Electronics value chain to locally manufacture modules

Source: Secondary reports, Public domain, EY-Parthenon analysis

Indian Players Page 59

With strong support from PLI, Vedanta and Tamil Nadu Guidance Bureau have made announcements that relate to cumulative production capacity of ~80k wafers/ month

PLI scheme for semiconductor manufacturing

Semiconductor PLI Scheme (2021)

- In 2021, Indian Givernment announced a Production Linked Incentive (PLI) of \$10 billon (INR 76k Crore) to encourage semiconductor & display manufacturing in India
- Incentives for semiconductor fabs/ project cost are based on the size of nodes:

Size of Node (nm)	Fiscal Support/Incentive
45-65	30% of project cost
28-45	40% of project cost
<28	50% of project cost

Tweakings to the PLI Scheme

- The scheme allows a uniform fiscal support of 50% of the project cost for semiconductor fabs across technology nodes and display manuacturing
- The modified scheme also emphasizes on the production of 45 nm chips which are fairly less time consuming and economical in terms of production
- These chips have a high demand, with demand primarily driven by sectors such as power, automotive & telecom
- Despite push from local and central governments, local manufacturing of HV semiconductor components, such as those required for e-CVs, is unlikely to begin soon due to significanly lower demands and higher investments needed

PLI – Production Linked Incentive Source: Secondary research, EY-Parthenon Analysis Recent Announcements in Semiconductor landscape in India

- Vedanta & Taiwanese chipmaker Foxconn have signed a Memorandum of Understanding (MoU) to set up a ₹1,54,000 crore semiconductor plant in Gujarat
 - The project is likely to get subsidies & incentives like zero stamp duty on land purchase & subsidized water & electricity under the 'Gujarat Semiconductor Policy 2022-27'

In July 2022, An MoU has been signed between IGSS Ventures & Tamil Nadu Guidance Bureau for setting up a semiconductor plant in Tamil Nadu with a capacity to develop 40,000 wafers per month – roughlly 2,000 to 2,200 chips per wafer

Majority of PE components have high potential for localisation, however, despite introduction of favourable policy, semiconductor components will not be fully localised

Power Electronics – Localization Potential in India

Localized vs. imported components	Current localisation	Potential for localisation
Semiconductor Components/Microcontroller: Majority of automotive grade semiconductor components and microcontrollers for CVs are expected to be imported		
• Passive/Electronic Components: Passive components (capacitors, inductors, etc) & electronic components (fuse, wiring, connectors, etc) are currently manufactured locally and are expected to have high potential for localisation for use in high voltage systems		
• Software: With a large talent pool available locally, software development for power electronics has high potential for localisation		
PDU/Junction Box: Largely comprised of passive/electronic components, potential for localisation for this component is high		
• PCB: With WBG materials increasing market penetration, PCB capable of withstanding higher temperatures would be required, and have a high potential for localisation		
Low Medium	High	EV Parthone

Table of Contents

- Project Summary
- WP 1: Baseline Cost & Weight estimation
- ▶ WP 2: Cost projections for Key ZET components
- ▶ WP 3: Evaluation of existing supply chain & localization potential
- ► Appendix

Ratio of the total costs to the direct costs across the industry ranges from ~1.3 to ~1.68 – sub-optimal for comparison across the OEMs

Cost Ratio Comparison

Page 63

The operating expenses and other expenses contribute to ~42% of the Conversion and Margins cost; SG&A and D&A contribute to ~44% of the cost

2: Depreciation and Amortization

3: Research and Development Expense

Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

The operating expenses and other expenses contribute to ~42% of the Conversion and Margins cost; SG&A and D&A contribute to ~44% of the cost

2: Depreciation and Amortization

3: Research and Development Expense

Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

Page 65

The operating expenses and other expenses contribute to ~42% of the Conversion and Margins cost; SG&A and D&A contribute to ~44% of the cost

2: Depreciation and Amortization

3: Research and Development Expense

Source: EY-Parthenon analysis, Supplier Quotations, Expert Interviews

Page 66

Differences in scaling factors for similar systems across trucks and buses stem primarily from differences in requirements, regulations and engineering specifications

Comparison of Scaling factors for various systems

System	Electric Bus Scaling Parameter	Electric Truck Scaling Parameter	Comments
Body Structure	INR 178.1/kg	INR 133.3/kg	Materials used in bus bodies such as steel, aluminium, and composites can are more expensive than those used in truck bodies resulting in a higher cost per kg for bus body structures
Braking System	INR 100/mm	INR 73.2/mm	The brakes considered for the bus are disc brakes whereas the brakes considered for the truck are s-cam drum brakes, resulting in a higher cost/mm for the braking system in buses
Front Axle	INR 5,844.2/ton	INR 5,833.3/ton	Due to usage of air suspension in the bus, the material cost of the front axle is higher than the one in the truck since axles supporting air suspension need to
Rear Axle	INR 5,882.4/ton	INR 5,000/ton	house additional components contain additional complexity, resulting in higher cost/GVW supported for axles in the bus
Front Suspension	INR 11,039/ton	INR 3,333.3/ton	The suspension system considered for buses are air suspensions, whereas the open considered for trucks are variations of loaf spring suspensions, resulting in
Rear Suspension	INR 16,666.7/ton	INR 2,500/ton	a higher cost/ton supported for bus suspensions
Front Tires + Wheels			Tires for buses are engineered to higher specification as they have are required to most more stringent action.
Rear Tires + Wheels	INR 1,000/Inch	INR 857.1/inch	smoother ride, leading to a higher cost/inch for bus tires and wheels
LV Wiring Harness	INR 1,250/kg	INR 1,000/kg	Due to a higher number of terminal connections and electrical loads in the bus, the HV wiring harness for an electric bus has more variety in connectors and is engineered to higher tolerances, resulting in a marginally higher cost per kg for a bus

EYP has taken lower volumes & larger average battery capacities, relative to Niti Aayog, resulting in identical demands and no impact on the forecasted battery pack costs

Niti Aayog Scenario Comparison

When forecasting battery capacity demand for 2030, both EY-P and Niti Aayog considered segment-wise volumes and average battery capacity (kWh)

- EY-P has considered higher average capacities, based on an understanding that LFP's will be the dominant battery chemistry in India, and will therefore have lower power densities
- Niti Aayog has assumed higher segment-wise volumes based on their optimistic scenario, whereas EY-P has considered lower volumes based on internal analysis
- As a result, EY-P and Niti Aayog have arrived at approximately the same figure for demand at ~136 GWh in 2030
- Due to this, relative to the global demand and local supply considerations used in the forecasting of battery costs, the cell costs forecasted over the period 2022-2040 would remain same in both the Niti Aayog and EY-P scenario

Source: EY-Parthenon analysis, Advanced Chemistry Cell Battery Reuse and Recycling Market in India - Niti Aayog

Page 68

Methodology and Assumptions for Battery Demand Estimation

Battery demand in India

- Lithium-Ion battery demand in India has been calculated based on the below mentioned methodology and it only includes EV based battery demand and excludes the battery demand based out of ESS and others
- Vehicle Category-wise assumptions
 - e-2W's will likely have a mixture of motorcycles and scooters with motorcycles growing their market share at a faster pace till 2030 as compared to scooters
 - e-4W's will likely grow at a CAGR of ~57% owing to population growth and incentives for consumers
- e-MHCV will likely have a lower growth rate but owing to the higher battery capacity associated with these, they will add considerably to the battery demand
- Government incentives as in FAME-2,etc. will continue to have an impact on increasing the EV penetration rates in India along with the high GDP growth rate and population growth which will likely again aid the growth rate of EV's in India
- > Total no. of batteries in the market will increase considerably after 2028 owing to the End-of-Life batteries coming into the market from the first gen. of EV's sold
- Average Battery Capacity for every segment is likely to increase because more EV's will try to reach the ranges offered by ICE vehicles. The increase in range in kms and decrease in energy consumption for EV's will result in a net increase in battery capacity and it will be the same story for every vehicle category
- In India, battery chemistry will continue to dominated by LFP as compared to NMC owing to its low cost and thermal stability. e-2W, e-3W and the e-4W market is likely to be dominated by LFP with NMC taking major share in e-MHCV and high performing applications

Page 69

For consideration of diesel truck cost forecasts, EY-P analyzed upgrades in line with requirements of stricter fuel emission norms

Cost Estimation of FE Improvement Technologies for Diesel Engine

	2022	2030	2035	Increase from 2022	2040	Increase from 2035	Total Increase
Engine Costs (Baseline = BSVI)	5,85,000	6,63,000	7,32,300	1,47,300	9,54,405	2,22,105	3,69,405
Level 1 upgrades		+13.33%					78,000
Level 2 upgrades			+10.5%				69,300
Euro 7					+30%		2,22,105
Transmission Upgrades (Baseline = 6+1 Speed Manual)	1,40,000	1,40,000	1,80,000	40,000	1,80,000	0	40,000
6 speed AMT			40000.00				

Level 1 Engine Upgrades				
OBD Updates	78,000			

Level 2 Engine Upgrades	
VGT ¹	15,000
Start/Stop	10,800
Light weighting*	27,000

Euro 7 Upgrades	
Cylinder deactivation	10,000
48V Mild Hybrid System**	132105
Turbo Compounding	94,831

After treatment technologies not considered as a part of this study as discussions with OEMs indicate more emphasis on data recording technologies anticipated rather than upgrades to existing after-treatment technologies

1. Variable Geometry Turbo

* Light weighting takes into consideration lighter prop shaft, aluminum alloy engine block, cast pistons

** Mild-hybrid system considered with 15kW motor, 2kWh battery, software and power electronics

Source: Secondary Sources, EY-Parthenon analysis

Ernst & Young LLP

EY | Assurance | Tax | Strategy and Transactions | Consulting

About EY

EY is a global leader in assurance, tax, strategy, transaction and consulting services. The insights and quality services we deliver help build trust and confidence in the capital markets and in economies the world over. We develop outstanding leaders who team to deliver on our promises to all of our stakeholders. In so doing, we play a critical role in building a better working world for our people, for our clients and for our communities.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. Information about how EY collects and uses personal data and a description of the rights individuals have under data protection legislation are available via ey.com/privacy. For more information about our organization, please visit ey.com.

Ernst & Young LLP is one of the Indian client serving member firms of EYGM Limited. For more information about our organization, please visit www.ey.com/en_in.

Ernst & Young LLP is a Limited Liability Partnership, registered under the Limited Liability Partnership Act, 2008 in India, having its registered office at 22 Camac Street, 3rd Floor, Block C, Kolkata - 700016

© 2020 Ernst & Young LLP. Published in India. All Rights Reserved.

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. On any specific matter, reference should be made to the appropriate advisor.